NEUMOLOGÍA PEDIÁTRICA

Neumol Pediatr 2022; 17 (4): 126 - 128 Revista Neumología Pediátrica | Contenido disponible en www.neumologia-pediatrica.cl 128 Actualización en Fibrosis Quística: Fagoterapia: ¿Es el futuro para tratar bacterias miltirresistentes? CTUALIZACIONES/UP TO DATE 1. Pragman AA.,Berger JP.,Williams BJ. Understanding persistent bacterial lung infections: clinical implications informed by the biology of the microbiota and biofilms. Clin Pulm Med. 2016;23(2):57-66. 2. Malhotra S., Hayes D Jr., Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev. 2019 29;32(3):e00138-18. doi: 10.1128/ CMR.00138-18. 3. Ramírez-Mata A., Fernández-Domínguez IJ., Nuñez-Reza KJ.., Xiqui-Vázquez ML, Baca BE. Redes de señalización en la producción de biopelículas en bacterias: quorum sensing, di-GMPc y óxido nítrico. Rev Argent Microbiol. 2014; 46(3):242-55. 4. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011 5;2(65):1-13. 5. Kenna DTD, Lilley D, Coward A, Martin K, Perry C ,Pike R. et al. Prevalence of Burkholderia species, including members of Burkholderia cepacia complex, among UK cystic and non-cystic fibrosis patients. J Med Microbiol. 2017;66(4):490-501. 6. Van Acker H., Sass A., Bazzini S., De Roy K., Udine C. et al,. Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. PLoS One. 2013;8(3):e58943. doi: 10.1371 7. Furfaro LL., Payne MS., Chang BJ. Bacteriophage Therapy: Clinical Trials and Regulatory Hurdles. Front Cell Infect Microbiol. 2018; 23(8):376. 8. ChangRYK., WallinM., Lin Y., Leung SSY., WangH. et al Phage therapy for respiratory infections. Adv Drug Deliv Rev. 2018; 133:76-86. 9. Hanlon GW. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents. 2007 30(2):118-28. 10. Maciejewska B, Olszak T, Drulis-Kawa Z. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol. 2018;102(6):2563-2581. 11. Akturk E, Oliveira H, Santos SB, Costa S, Kuyumcu S, Melo LDR. et al. Synergistic Action of Phage and Antibiotics: Parameters to Enhance the Killing Efficacy Against Mono and Dual-Species Biofilms. Antibiotics (Basel). 2019;8(3):103. doi: 10.3390/antibiotics8030103. 12. Wang X, Xie Z, Zhao J, Zhu Z, Yang C, Liu Y. Prospects of Inhaled PhageTherapy for Combatting Pulmonary Infections. Front Cell Infect Microbiol. 2021 6;11:758392. doi: 10.3389/ fcimb.2021.758392 13. Onsea J., Uyttebroek S., Chen B. Bacteriophage Therapy for Difficult-to-Treat Infections: The Implementation of a Multidisciplinary Phage Task Force (The PHAGEFORCE Study Protocol). Viruses 2021, 13 (8):1543 doi: 10.3390/ v13081543 14. Iszatt JJ, Larcombe AN, Chan HK, Stick SM, Garratt LW, Kicic A. PhageTherapy forMulti-DrugResistant Respiratory Tract Infections. Viruses. 2021 Sep 11;13(9):1809 doi: 10.3390/ v13091809. 15. Ben Porat S, Gelman D, Yerushalmy O.et al. Expanding clinical phage microbiology: simulating phage inhalation for respiratory tract infections. ERJ OpenRes. 2021;7(4):003672021. doi: 10.1183/23120541.00367-2021 REFERENCIAS

RkJQdWJsaXNoZXIy MTYwMjk1